TY - JOUR
AU - Gonzalez-Rocha, Alejandra
AU - Colli, Victor A.
AU - Denova-Gutierrez, Edgar
PY - 2023
TI - Risk Prediction Score for Chronic Kidney Disease in Healthy Adults and Adults With Type 2 Diabetes: Systematic Review
T2 - Preventing Chronic Disease
JO - Prev Chronic Dis
SP - E30
VL - 20
CY - Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
N2 - INTRODUCTION Chronic kidney disease (CKD) is an important public health problem. In 2017, the global prevalence was estimated at 9.1%. Appropriate tools to predict the risk of developing CKD are necessary to prevent its progression. Type 2 diabetes is a leading cause of CKD; screening the population living with the disease is a cost-effective solution to prevent CKD. The aim of our study was to identify the existing prediction scores and their diagnostic accuracy for detecting CKD in apparently healthy populations and populations with type 2 diabetes. METHODS We conducted an electronic search in databases, including Medline/PubMed, Embase, Health Evidence, and others. For the inclusion criteria we considered studies with a risk predictive score in healthy populations and populations with type 2 diabetes. We extracted information about the models, variables, and diagnostic accuracy, such as area under the receiver operating characteristic curve (AUC), C statistic, or sensitivity and specificity. RESULTS We screened 2,359 records and included 13 studies for healthy population, 7 studies for patients with type 2 diabetes, and 1 for both populations. We identified 12 models for patients with type 2 diabetes; the range of C statistic was from 0.56 to 0.81, and the range of AUC was from 0.71 to 0.83. For healthy populations, we identified 36 models with the range of C statistics from 0.65 to 0.91, and the range of AUC from 0.63 to 0.91. CONCLUSION This review identified models with good discriminatory performance and methodologic quality, but they need more validation in populations other than those studied. This review did not identify risk models with variables comparable between them to enable conducting a meta-analysis.
SN - 1545-1151
UR - https://doi.org/10.5888/pcd20.220380
DO - 10.5888/pcd20.220380
ER -